Tennecula volley Astirononner

Events:

Virtual meeting via Zoom on 14 September at 7PM. Join your fellow astronomers for What's Up, IFI and a Mission Highlight. Virtual refreshments provided by Annette Brown. Watch your club email for meeting ID and password.

Until we can resume our monthly meetings, you can also interact with your astronomy associates on Facebook or by posting a message to our mailing list.

WHAT'S INSIDE THIS MONTH:

Cosmic Comments
by President Mark Baker
Looking Up Redux
compiled by Clark Williams
Summer Triangle Corner: Altair
by David Prosper

Send newsletter submissions to Mark DiVecchio markd@silogic.com by the $20^{\text {th }}$ of the month for the next month's issue.

Like us on Facebook

The Arecibo Message was sent towards M13 in 1974. It will arrive in about 30,000 years but M13 may no longer be in position to receive it.

General information:
Subscription to the TVA is included in the annual \$25 membership (regular members) donation ($\$ 9$ student; \$35 family).

President: Mark Baker 951-691-0101
shknbk13@hotmail.com
Vice President: Sam Pitts < sam@samsastro.com>
Past President: John Garrett < garrjohn@,gmail.com>
Treasurer: Curtis Croulet calypte@verizon.net
Secretary: Deborah Baker < geedeb@gmail.com>
Club Librarian: Vacant
Facebook: Tim Deardorff tim-deardorff@yahoo.com
Star Party Coordinator and Outreach: Deborah Baker geedeb@gmail.com

Address renewals or other correspondence to:
Temecula Valley Astronomers
PO Box 1292
Murrieta, CA 92564
Members' Mailing List:
tvastronomers@googlegroups.com
Website: http://www.temeculavalleyastronomers.com/

The monthly newsletter of the Temecula Valley Astronomers

Cosmic Comments by President Mark Baker

Now that my helicopter is Mars bound and the recent comet and meteor shower aren't grabbing the spotlight, l'll be returning to my most common dialogue for this year - Near Earth Objects!!!

While supporting CNEOS and PDCO, l've been encouraging any and all to sign up with them and assist in the search for the next extinction event object heading our way... okay, a little dramatic maybe, but there are as yet undiscovered objects that fall into an NEO, if not a PHO, category. Even the ZTF up at Palomar Observatory has detected one during its survey routine, that appears to be the closest recorded approach without actually striking the Earth or imploding in the atmosphere... being the size of a car, it would have been spectacular in either category - unless it was your yard it fell into!!!

Fortunately, STUDENTS all over the world have taken up the gauntlet and are using the tools and apps provided by related organizations to review survey data and even visually corroborate sightings...except here in the USA, sadly. Lots of younglings can take pride that their names are how over 90% of recent discoveries are identified...

Almost everyone knows of Arecibo, but few realize it was more than just a tool for SETI use, or a backup for the DSN... its radar capabilities were helping to discover many of the objects that have been followed up on and identified. The recent damage drastically reduces our ability to monitor the skies properly, but many have assumed the mantle of responsibility, if in a diminished capacity...

Bottom line?? We need more eyes on the skies and reviewing the available data... if you'd like to help, let me know. Maybe that upcoming extinction event will even bear your name... who knows??!!!

Clear, Dark Skies my Friends...

Looking Up Redux compiled by Clark Williams

from these sources:
SeaSky.org
Wikipedia.com
in-the-sky.org
The American Meteor Society, Ltd.
cometwatch.co.uk
NASA.gov
TVA App (2.0.1296)
FullAndNewMoon App (2.0)
Starry Night Pro Plus 7 (7.6.3.1373)
SkySafari 6 Pro (6.1.1)
Stellarium (0.18.2)
timeanddate.com/astronomy
https://www.fourmilab.ch/earthview/pacalc.html

ALL TIMES ARE LOCAL PACIFIC TIME UNLESS NOTED OTHERWISE

Times are given in 24-hour time as: (hh is hours, mm minutes, ss seconds)
hh:mm:ss or hhmmss
hhmm + (time of the next day)
hhmm- (time of the previous day)
hhmm (seconds not shown)
yyyymmddThhmmss (Full date as: year month day Time separator hours minutes seconds)

Moon Phases for the month by phase:

Wednesday	the $23^{\text {rd }}$	@ 1856 FIRST QTR in SAGITTARIUS
Tuesday	the $1^{\text {st }}$	@ 2223 FULL in AQUARIUS
Thursday	the $10^{\text {th }}$	@ 0226 THIRD QTR in TAURUS
Thursday	the $17^{\text {th }}$	@ 0401 NEW in VIRGO

Apogee comes on 2020-09-06 @ 2332-405,605 km (252,031 mi)
Perigee comes on 2020-09-18 @ 0645-359,080 km (223,122 mi)
2020 has: (12) new moons, (13) $1^{\text {st }}$ Qtr moons, (13) Full moons, (12) $3^{\text {rd }}$ Qtr moons
(1) Blue moon and (0) Black moons

Daylight Savings: Starts: 2020-Mar-08 : Ends: 2020-Nov-01
Luna: Luna is Full on the $1^{\text {st }}$ of the month. Luna is transiting at 0015+ setting by 0543+. Luna by mid-month is a Waning Crescent, 2.6% illuminated. Rising early at 0420 and setting in the morning at 1125. By the-end-of-the-month Luna is again Waxing Gibbous, 99% illuminated setting by 0531+.

Tennecule Valley Astronoñer

The monthly newsletter of the Temecula Valley Astronomers Sep 2020

Highlights: (distilled from: SeaSky.org and Clark's planetary Orrey program[s])
September 2 - Full Moon. The Moon will be located on the opposite side of the Earth as the Sun and its face will be will be fully illuminated. This phase occurs at 05:23 UTC. This full moon was known by early Native American tribes as the Corn Moon because the corn is harvested around this time of year.

September 11 - Neptune at Opposition. The blue giant planet will be at its closest approach to Earth and its face will be fully illuminated by the Sun. It will be brighter than any other time of the year and will be visible all night long. This is the best time to view and photograph Neptune. Due to its extreme distance from Earth, it will only appear as a tiny blue dot in all but the most powerful telescopes.

September 17 - New Moon. The Moon will located on the same side of the Earth as the Sun and will not be visible in the night sky. This phase occurs at 11:00 UTC. This is the best time of the month to observe faint objects such as galaxies and star clusters because there is no moonlight to interfere.

September 22 - September Equinox. The September equinox occurs at 13:30 UTC. The Sun will shine directly on the equator and there will be nearly equal amounts of day and night throughout the world. This is also the first day of fall (autumnal equinox) in the Northern Hemisphere and the first day of spring (vernal equinox) in the Southern Hemisphere.

Tennecula Valley Asitrononner The monthly newsletter of the Temecula Valley Astronomers Sep 2020

Algol minima: (All times Pacific Time)

$09 / 02 / 2020$	0553
$09 / 05 / 2020$	0242
$09 / 07 / 2020$	2330
$09 / 10 / 2020$	2019
$09 / 13 / 2020$	1708
$09 / 16 / 2020$	1356
$09 / 19 / 2020$	2245
$09 / 22 / 2020$	0733
$09 / 25 / 2020$	0422
$09 / 28 / 2020$	0111
$09 / 30 / 2020$	0959

The monthly newsletter of the Temecula Valley Astronomers
All times PDT
Ephemeris data for Sun

Local Time	Const.	Rise	Transit	t	Distance
20200901 13:48:36	Leo	6:21	12:48	19:15	1.00894 au
20200902 13:48:36	Leo	6:22	12:48	19:13	1.00870 au
20200903 13:48:36	Leo	6:23	12:47	19:12	1.00846 au
20200904 13:48:36	Leo	6:23	12:47	19:11	1.00821 au
20200905 13:48:36	Leo	6:24	12:47	19:09	1.00797 au
20200906 13:48:36	Leo	6:25	12:46	19:08	1.00772
20200907 13:48:36	Leo	6:25	12:46	19:06	1.00747
20200908 13:48:36	Leo	6:26	12:46	19:05	1.00722
20200909 13:48:36	Leo	6:27	12:45	19:04	1.00697 au
20200910 13:48:36	Leo	6:27	12:45	19:02	1.00672
20200911 13:48:36	Leo	6:28	12:45	19:01	1.006
20200912 13:48:36	Leo	6:29	12:44	19:00	1.00620 au
20200913 13:48:36	Leo	6:30	12:44	18:58	1.00594 au
20200914 13:48:36	Leo	6:30	12:44	18:57	1.0056
20200915 13:48:36	Leo	6:31	12:43	18:55	1.00541 au
20200916 13:48:36	Virgo	6:32	12:43	18:54	1.00514 au
20200917 13:48:36	Virgo	6:32	12:43	18:53	1.00487 au
20200918 13:48:36	Virgo	6:33	12:42	18:51	1.004
20200919 13:48:36	Virgo	6:34	12:42	18:50	1.004
20200920 13:48:36	Virgo	6:34	12:42	18:49	1.00403
20200921 13:48:36	Virgo	6:35	12:41	18:47	1.00375 au
20200922 13:48:36	Virgo	6:36	12:41	18:46	1.00346 au
20200923 13:48:36	Virgo	6:36	12:40	18:44	1.00318
20200924 13:48:36	Virgo	6:37	12:40	18:43	1.00289 au
20200925 13:48:36	Virgo	6:38	12:40	18:42	1.00260 au
20200926 13:48:36	Virgo	6:38	12:39	18:40	1.00231 au
20200927 13:48:36	Virgo	6:39	12:39	18:39	1.00202 au
20200928 13:48:36	Virgo	6:40	12:39	18:38	1.00173 au
20200929 13:48:36	Virgo	6:40	12:38	18:36	1.00144 au
20200930 13:48:36	Virgo	6:41	12:38	18:35	1.00116 au

Tennecule
Valley Astronomer
The monthly newsletter of the Temecula Valley Astronomers
All times PDT
Ephemeris data for The Moon

Local Time	Az	Alt	Con	Rise	Tr	Set	Dist(km)	lum
20200901 T210000	119 ${ }^{\circ} 05.692{ }^{\prime}$	+17 ${ }^{\circ} 01.682^{\prime}$	Aqu	19:24	01:03	16:43	397130.1	99.76\%
20200902T210000	$108^{\circ} 37.240^{\prime}$	+11 ${ }^{\circ} 57.496{ }^{\prime}$	Aqu	19:54	01:46	07:39	400232.1	98.83\%
$20200903 T 210000$	098 ${ }^{\circ} 40.271^{\prime}$	+06 ${ }^{\circ} 39.330{ }^{\prime}$	Pis	20:22	02:27	08:34	402869.1	96.08\%
20200904 T210000	089 ${ }^{\circ} 03.220^{\prime}$	+01 ${ }^{\circ} 23.203{ }^{\prime}$	Cet	20:49	03:07	09:28	404868.0	91.67\%
20200905T210000	079 ${ }^{\circ} 34.318^{\prime}$	-04 ${ }^{\circ} 25.883^{\prime}$	Pis	21:16	03:47	10:23	406047.7	85.80\%
200906T210000	070 01.530^{\prime}	-09 ${ }^{\circ} 50.368^{\prime}$	Ari	21:44	04:29	11:18	406239.5	78.6
20200907T210000	060 ${ }^{\text {12.267 }}$	-15 $5^{\circ} 04.308^{\prime}$	Ari	22:15	05:12	12:14	405310.0	70.53\%
20200908T210000	049 ${ }^{\circ} 53.155^{\prime}$	-20 01.273'	Tau	22:49	05:58	13:11	403182.8	61.56\%
20200909T210000	038 ${ }^{\circ} 50.231^{\prime}$	-24 ${ }^{\circ} 32.942^{\prime}$	Tau	23:28	06:47	14:09	399859.5	52.02\%
200910T210000	026 ${ }^{\circ} 50.166^{\prime}$	-28 ${ }^{\circ} 27.998^{\prime}$	Tau	00:13	07:3	15:06	395436.6	2.18\%
2020911T210000	013 ${ }^{\circ} 43.336{ }^{\prime}$	-31 ${ }^{\circ} 31.371^{\prime}$	Gen	01:0	08:3	16:00	390116.5	2.37\%
20200912 T 210000	359 ${ }^{\circ} 29.086^{\prime}$	-33 ${ }^{\circ} 24.710^{\prime}$	Gem	01:06	08:33	16:00	384209.3	23.00\%
20200913 T210000	$344^{\circ} 21.391^{\prime}$	-33 ${ }^{\circ} 49.167^{\prime}$	Can	12:05	09:29	16:50	378120.8	4.54\%
20200914 T210000	328 ${ }^{\circ} 49.693^{\prime}$	-32 ${ }^{\circ} 30.710^{\prime}$	Leo	03:10	10:26	17:36	372322.6	07.57\%
20200915 T 210000	$313^{\circ} 30.410^{\prime}$	-29 ${ }^{\circ} 25.704^{\prime}$	Leo	04:18	11:21	18:18	367302.5	02.65\%
20200916 T210000	298 ${ }^{\circ} 53.061$ '	-24* 43.129^{\prime}	Leo	05:29	12:15	18:56	363498.9	00.29\%
20200917 T 210000	$285^{\circ} 11.305^{\prime}$	-180 42.092	Vir	06:40	13:08	19:32	361230.1	0.82\%
20200918T210000	$272^{\circ} 23.336{ }^{\prime}$	-11 ${ }^{\circ} 46.892{ }^{\prime}$	Vir	07:51	14:01	20:07	360641.0	4.30\%
20200919T210000	$260^{\circ} 17.385^{\prime}$	-04 ${ }^{\circ} 22.536^{\prime}$	Vir	09:02	14:54	20:43	361682.1	0.49\%
20200920T210000	$248{ }^{\circ} 37.053^{\prime}$	+03 ${ }^{\circ} 20.257^{\prime}$	Lib	10:13	15:48	21:22	364131.7	8.89\%
200921T210000	$237^{\circ} 04.600^{\prime}$	+10 ${ }^{\circ} 29.727^{\prime}$	Sco	11:24	16:44	22:04	367652.0	28.83\%
20200922 T210000	$225^{\circ} 22.714^{\prime}$	+17 ${ }^{\circ} 14.178^{\prime}$	Oph	12:32	17:42	22:52	371858.9	39.64\%
20200923 T210000	$213^{\circ} 15.925^{\prime}$	+23 ${ }^{\circ} 14.043^{\prime}$	Sag	13:37	18:40	23:44	376386.3	50.67\%
20200924 T210000	$200^{\circ} 32.711^{\prime}$	+28 ${ }^{\circ} 14.652^{\prime}$	Sag	14:36	19:38	00:40	380930.2	61.35\%
20200925T210000	$187^{\circ} 08.810^{\prime}$	+32 ${ }^{\circ} 02.559^{\prime}$	Sag	15:28	20:34	01:39	385269.9	71.25\%
$20200926 T 210000$	$173^{\circ} 10.916^{\prime}$	+34 ${ }^{\circ} 26.195^{\prime}$	Cap	16:13	21:26	02:39	389267.3	80.02\%
20200927 T210000	158 ${ }^{\circ} 57.984^{\prime}$	+35 ${ }^{\circ} 18.076{ }^{\prime}$	Cap	16:52	22:15	03:38	392852.9	87.37\%
20200928T210000	$144^{\circ} 57.027^{\prime}$	+34 ${ }^{\circ} 37.189^{\prime}$	Aqu	17:26	23:01	04:36	396002.5	93.13\%
20200929T210000	$131^{\circ} 34.143^{\prime}$	+32 ${ }^{\circ} 29.714^{\prime}$	Aqu	17:57	23:44	05:32	398712.5	97.14\%
20200930 T210000	$119^{\circ} 06.322^{\prime}$	+29 ${ }^{\circ} 07.289^{\prime}$	Pis	18:25	00:25	06:28	400976.6	99.33

The monthly newsletter of the Temecula Valley Astronomers Sep 2020
Planets:
Planetary Positions September 2020: (from TVA App iOS version)

- Mercury: Mercury is an evening object in the beginning of the month. It is illuminated at 91% and -0.57 apparent magnitude. Mercury rises at: 026 and sets by 1953 with sunset preceeding at 1915. By mid-month the Winged Messenger is approaching Greatest Eastern Elongation. Sunset will be at 1855; Mercury sets at 1948. On the $31^{\text {st }}$ Mercury is setting at 1933 preceded by sunset at 1835 .
- Venus: Is the Morning Star in the beginning of the month, rising at 0251 preceding sunrise at 0621. By mid-month Venus rises at 0307 followed by Sol at 0631 . By the $30^{\text {th }}$ Venus is rising at 0329 . followed by sunrise at 0641.
- Mars: Mars is rising at 2128 on the $1^{\text {st }}$ of the month, transiting at 0349. By mid-month Mars is rising at 2033. End-of-month finds the Warrior rising at 1925, transiting at 0144+.
- Jupiter: On the first of the month Jove rising at 1619 and transiting at 2118. There is a Full Moon to the east of Jupiter. By mid-month Jupiter is rising at 1523 with no Earth Moon in sight.

Saturn is about 8° to the east of Jupiter. Come the end of month Jupiter is peaking above the horizon by 1426. However the Moon is Full. But you'll have a great grouping of Jupiter, Pluto and Saturn - you just won't be able to see it very well.

- Saturn: Saturn is trailing Jupiter and Pluto; rising about 1649 on the $1^{\text {st }}$. The moon is Full. Saturn by mid month is rising by 1553. You'll have a good grouping of Saturn, Pluto and Jupiter, so cameras should be ready and working. By the end-of-the-month Saturn is rising at 1453 and transiting at 1957. See Jupiter for the Moon interference.
- Uranus: On the first Uranus rises at 2150. The apparent magnitude is 5.72 so we're on the ragged edge of being naked-eye visible. The Astronomer's Bane will be Full to the west so you may not be able to eek out a view. By the ides Uranus is rising at 2054. End of the month and the "sky god" is rising at 1954 while a Waxing gibbous 99% illuminated Moon glares away 39° to the west.
- Neptune: Neptune is leading Uranus. Neptune is rising at 1935 in the beginning of the month. There is a Full Moon 57° westward of Neptune. By the $15^{\text {th }}$ Neptune is rising at 1935 and transiting at $0125+$. By the end of the month Neptune is rising at 1935 . The Moon is 13° westward with 99% illumination.
- Pluto: On the first of the month Pluto is lost to the glare of them Moon. By mid-month Pluto is rising by 1545 and is half-way between Saturn and Jupiter. Pluto transits at 2045 (see Jupiter above) but the apparent magnitude 14.29 will make it difficult to see.. By the $31^{\text {st }}$ Pluto is transiting at 1945 but the pesky Moon is right where you do not want it to be, shinning at 99%.

Asteroids:

- Still a dearth of asteroids. I searched for asteroids in 2020 with a reasonable magnitude; say less than or equal to +10 in September there are a few beyond the regulars: Juno, Vesta. Hebe, Eros and Herculina. So consult your local planetarium software for more or try: https://www.asteroidsnear.com/year?year=2020
(1) Ceres Dwarf Planet in Aquarius $1^{\text {st }}-30^{\text {th }}$ rising: mag 7.7 - is the largest and most massive asteroid in the inner Solar System.
(2) Pallas Asteroid in Hercules $1^{\text {st }}-30^{\text {th }}$ rising: mag 10.0 - the second largest asteroid in the inner Solar System and the largest body in the Solar System not to be rounded by its own gravity.
(129) Antigone Asteroid in Sagittarius $1^{\text {st }}-30^{\text {th }}$ rising: mag 11.1 - orbiting the sun every 4.9 years at an average distance of 2.9 AU. Antigone is a large object at 125 km in diameter and is a main belt asteroid orbiting the Sun between Mars and Jupiter.

Meteors:

- See Highlights above for more details. (SeaSky.org) (American Meteor Society)

Comets: come in various classifications:

- 1) Short Period comets - further broken down into:
- Halley Type: The Halley Types are believe to come from the Kuiper Belt and have periods in excess of 20 -years.
- Jupiter Type: The Jupiter types have a period less than or equal to 20-years.
- Short period comets have a near circular orbit or an elliptical orbit. The latter being far more common.
- 2) Long Period comets - thought to originate from the Oort cloud these comets have periods of over 200 years and have random inclinations around the celestial sphere.

ESTIMATES ONLY

Local time 2100 PDT

C/2020 F3 (NEOWOSE)

September 01 Mag: 10.8 Rises: 1037 Sets: 2222 comet in Virgo
September 15 Mag: 12.2 Rises: 1016 Sets: 2134 comet in Libra
September 30 Mag: 11.4 Rises: 0907 Sets: 1618 comet in Centaurus

289P/Blanpain

September 01 Mag: 10.0 Rises: 0921 Sets: 2109 comet in Virgo
September 15 Mag: 10.2 Rises: 0849 Sets: 2021 comet in Virgo
September 30 Mag: 10.5 Rises: 0815 Sets: 1935 comet in Virgo Tennecula

Deep Sky:
Notes:
L/Z abbreviation for ALT/AZ
R/D abbreviation for Right Ascension/Declination
α is right ascension
δ is declination
In each case, unless otherwise noted, you should look for the following on or about the $15^{\text {th }}$ Day of September 2020 at 2100 PDT and you will have about 20 minutes of viewing time total.

- Epsilon Lyrae (ε Lyr, ε Lyrae)

By Nikolay NIkolov - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?
curid $=90751656$

- Also known as the Double Double, is a multiple star system of at least five stars approximately 162 light-years away in the constellation of Lyra.
The widest two components of the system are easily separated when viewed through binoculars, or even with the naked eye under excellent conditions. The northern component is called $\varepsilon 1$ (ADS 11635 AB in multiple star notation) and the southern $\varepsilon 2$ (ADS 11635 CD); they lie around 160 light years from Earth and orbit each other over hundreds of thousands of years. Their separation of 208 " is about one hundred times that of the sub-components. When viewed at higher magnifications, each intuitively likely "star" proves to be a set of

Tennecula

The monthly newsletter of the Temecula Valley Astronomers Sep 2020

shorter-term, close-orbiting binary stars. Ability to view these sub-components is a common benchmark for the resolving power of telescopes, since they are so close together: the stars of $\varepsilon 1$ were 2.35 arc-seconds apart in 2006, those of $\varepsilon 2$ were separated by about the same amount in that year. Since the first high-precision measurements of their orbit in the 1980s, both binaries have moved only a few degrees in position angle. (Wikipedia)

- M17 Omega Nebula

By ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute - http://www.eso.org/public/images/esoll19al, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid $=26367295$

Tennecula

The monthly newsletter of the Temecula Valley Astronomers Sep 2020

- Messier 17 or M17, Omega Nebula, also known as the Swan Nebula, Checkmark Nebula, and the Horseshoe Nebula (catalogued as Messier 17 or M17 or NGC 6618) is an H II region in the constellation Sagittarius. It was discovered by Philippe Loys de Chéseaux in 1745. Charles Messier catalogued it in 1764. It is located in the rich starfields of the Sagittarius area of the Milky Way. The Omega Nebula is between 5,000 and 6,000 lightyears from Earth and it spans some 15 light-years in diameter. The cloud of interstellar matter of which this nebula is a part is roughly 40 light-years in diameter and has a mass of 30,000 solar masses. The total mass of the Omega Nebula is an estimated 800 solar masses. (Wikipedia)

September is great for both viewing and imaging. Spend some time outside with your scope. Summer is waning and fall nebulae are coming.

For now - Keep looking up.

Summer Triangle Corner: Altair by David Prosper

Altair is the final stop on our trip around the Summer Triangle! The last star in the asterism to rise for Northern Hemisphere observers before summer begins, brilliant Altair is high overhead at sunset at the end of the season in September. Altair might be the most unusual of the three stars of the Triangle, due to its great speed: this star spins so rapidly that it appears "squished."

A very bright star, Altair has its own notable place in the mythologies of cultures around the world. As discussed in our previous edition, Altair represents the cowherd Niulang in the ancient Chinese tale of the "Cowherd and the Weaver Girl." Altair is the brightest star in the constellation of Aquila the Eagle; while described as part of an eagle by ancient peoples around the Mediterranean, it was also seen as part of an eagle by the Koori people in Australia! They saw the star itself as representing a wedge-tailed eagle, and two nearby stars as his wives, a pair of black swans. More recently one of the first home computers was named after the star: the Altair 8800.

Altair's rapid spinning was first detected in the 1960s. The close observations that followed tested the limits of technology available to astronomers, eventually resulting in direct images of the star's shape and surface by using a technique called interferometry, which combines the light from two or more instruments to produce a single image. Predictions about how the surface of a rapidly spinning massive star would appear held true to the observations; models predicted a squashed, almost "pumpkin-like" shape instead of a round sphere, along with a dimming effect along the widened equator, and the observations confirmed this! This equatorial dimming is due to a phenomenon called gravity darkening. Altair is wider at the equator than it is at the poles due to centrifugal force, resulting in the star's mass bulging outwards at the equator. This results in the denser poles of the star being hotter and brighter, and the less dense equator being cooler and therefore dimmer. This doesn't mean that the equator of Altair or other rapidly spinning stars are actually dark, but rather that the equator is dark in comparison to the poles; this is similar in a sense to sunspots. If you were to observe a sunspot on its own, it would appear blindingly bright, but it is cooler than the surrounding plasma in the Sun and so appears dark in contrast.

As summer winds down, you can still take a Trip Around the Summer Triangle with this activity from the Night Sky Network. Mark some of the sights in and around the Summer Triangle at: bit.ly/ TriangleTrip. You can discover more about NASA's observations of Altair and other fast and furious stars at_nasa.gov. Tennecula valley Asitonoñer

Model of a fast-spinning star Actual image of Altair from the CHARA Interferometer

The image on the right was created using optical interferometry: the light from four telescopes was combined to produce this image of Altair's surface. Image credit: Ming Zhao. More info:_bit.ly/altairvsmodel

Altair is up high in the early evening in September. Note Altair's two bright "companions" on either side of the star. Can you imagine them as a formation of an eagle and two swans, like the Koori?

Tennecula Valley Asstrononner

This article is distributed by NASA Night Sky Network The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit https://nightsky.jpl.nasa.org to find local clubs, events, and more!

The TVA is a member club of The Astronomical League.

